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javac to WebAssembly with

Live Demo
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The New WebAssembly Backend for GraalVM

• Graal compiler targets WasmGC in a JS embedding

(helloworld program ~1MB in size, before wasm-opt or compression)

• Uses Garbage Collection and Exception Handling proposals

• Support for Java  JavaScript interoperability

• Programs can include arbitrary JDK code, which is substituted appropriately where 

necessary (for example for filesystem access)

• Support for threading, networking, graphics, and others are still missing

• We plan to contribute it to the open-source GraalVM Community Edition
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How to Try It Out Today

1. Install the latest early access build of Oracle GraalVM
For example, using SDKMAN!: sdk install java 25.ea.15-graal

2. Make sure the Binaryen toolchain is on the system path
For example, using Homebrew: brew install binaryen

3. Compile JVM bytecode to Wasm using the --tool:svm-wasm option:

$ native-image --tool:svm-wasm HelloWasm
===============================================================
GraalVM Native Image: Generating 'hellowasm' (executable)...
===============================================================
...
Build artifacts:
/Users/janedoe/dev/hellowasm.js (executable)
/Users/janedoe/dev/hellowasm.js.wasm (executable)
/Users/janedoe/dev/hellowasm.js.wat (build_info)
===============================================================
Finished generating 'hellowasm' in 5.3s.
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How Type Checks Work

Live Demo



From Java CLI to Client-Side Web Application
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• Stable and ready for production, with 
support for many standardized Wasm 
features

 

• Embeddable in Java, standalone 
distribution available

 

• WebAssembly/ES module integration 
makes it easy to use JavaScript bindings 
for Java  Wasm interactions 

 

• SIMD proposal and Dwarf debugging 
planned for next release

What’s New in GraalWasm
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webassembly.org/features/
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Debugging with

Live Demo



using VS Code via Debug Adapter Protocol using IntelliJ IDEA via Chrome Inspector Procotol

Debugging Rust compiled to Wasm embedded in Spring Boot
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• GraalWasm makes it easy to extend Java 
applications with WebAssembly

 

• GraalJS allows use of JavaScript bindings 
for Java  Wasm interactions
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• GraalVM can generate WasmGC now!

• Wasm modules built with JDK 25 EA
 

• Wasm backend provides Java  
JavaScript interoperability 

• GraalWasm makes it easy to extend Java 
applications with WebAssembly

 

• GraalJS allows use of JavaScript bindings 
for Java  Wasm interactions
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javac demo and code on GitHub: • GraalVM can generate WasmGC now!

• Wasm modules built with JDK 25 EA
 

• Wasm backend provides Java  
JavaScript interoperability 

• GraalWasm makes it easy to extend Java 
applications with WebAssembly

 

• GraalJS allows use of JavaScript bindings 
for Java  Wasm interactions
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