
The Future of Write
Once, Run Anywhere

From Java to WebAssembly

Patrick Ziegler (patrickziegler.ch)
Fabio Niephaus (fniephaus.com)

Oracle Labs

Copyright © 2025, Oracle and/or its affiliates2

The Future of Write Once, Run Anywhere

Copyright © 2025, Oracle and/or its affiliates3

The Future of Write Once, Run Anywhere

Copyright © 2025, Oracle and/or its affiliates4

javac to WebAssembly with

Live Demo

AOT Compilation

Ahead-of-Time
Compilation

Application

Libraries

JDK

GraalVM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

Copyright © 2025, Oracle and/or its affiliates5

AOT Compilation to WebAssembly

Ahead-of-Time
Compilation

Application

Libraries

JDK

GraalVM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

Wasm module

Copyright © 2025, Oracle and/or its affiliates6

Copyright © 2025, Oracle and/or its affiliates7

The New WebAssembly Backend for GraalVM

• Graal compiler targets WasmGC in a JS embedding

(helloworld program ~1MB in size, before wasm-opt or compression)

• Uses Garbage Collection and Exception Handling proposals

• Support for Java JavaScript interoperability

• Programs can include arbitrary JDK code, which is substituted appropriately where

necessary (for example for filesystem access)

• Support for threading, networking, graphics, and others are still missing

• We plan to contribute it to the open-source GraalVM Community Edition

Copyright © 2025, Oracle and/or its affiliates8

How to Try It Out Today

1. Install the latest early access build of Oracle GraalVM
For example, using SDKMAN!: sdk install java 25.ea.15-graal

2. Make sure the Binaryen toolchain is on the system path
For example, using Homebrew: brew install binaryen

3. Compile JVM bytecode to Wasm using the --tool:svm-wasm option:

$ native-image --tool:svm-wasm HelloWasm
===
GraalVM Native Image: Generating 'hellowasm' (executable)...
===
...
Build artifacts:
/Users/janedoe/dev/hellowasm.js (executable)
/Users/janedoe/dev/hellowasm.js.wasm (executable)
/Users/janedoe/dev/hellowasm.js.wat (build_info)
===
Finished generating 'hellowasm' in 5.3s.

Object

Number

Integer

int[] ... Object[]

Number[]

Integer[]

...

Type Hierarchy

Copyright © 2025, Oracle and/or its affiliates9

any

eq

struct array i31

extern func
Java WasmGC

Object

Number

Integer

int[] ... Object[]

Number[]

Integer[]

...

any

eq

struct array i31

extern func

Type Hierarchy

Copyright © 2025, Oracle and/or its affiliates10

?

Java WasmGC

Object

Number

Integer

int[] ... Object[]

Number[]

Integer[]

...

any

eq

struct

Object

Number

Integer

...
Base
Array

Object
Arrays

int[] ...

array i31

extern func

Type Hierarchy

Copyright © 2025, Oracle and/or its affiliates11

Java WasmGC

Copyright © 2025, Oracle and/or its affiliates12

How Type Checks Work

Live Demo

From Java CLI to Client-Side Web Application

Copyright © 2025, Oracle and/or its affiliates13

Copyright © 2025, Oracle and/or its affiliates14

The Future of Write Once, Run Anywhere

Copyright © 2025, Oracle and/or its affiliates15

The Future of Write Once, Run Anywhere

• Stable and ready for production, with
support for many standardized Wasm
features

• Embeddable in Java, standalone
distribution available

• WebAssembly/ES module integration
makes it easy to use JavaScript bindings
for Java Wasm interactions

• SIMD proposal and Dwarf debugging
planned for next release

What’s New in GraalWasm

Copyright © 2025, Oracle and/or its affiliates16

webassembly.org/features/

Copyright © 2025, Oracle and/or its affiliates17

Debugging with

Live Demo

using VS Code via Debug Adapter Protocol using IntelliJ IDEA via Chrome Inspector Procotol

Debugging Rust compiled to Wasm embedded in Spring Boot

Copyright © 2025, Oracle and/or its affiliates18

• GraalWasm makes it easy to extend Java
applications with WebAssembly

• GraalJS allows use of JavaScript bindings
for Java Wasm interactions

The Future of Write Once, Run Anywhere

Copyright © 2025, Oracle and/or its affiliates19

• GraalVM can generate WasmGC now!

• Wasm modules built with JDK 25 EA

• Wasm backend provides Java
JavaScript interoperability

• GraalWasm makes it easy to extend Java
applications with WebAssembly

• GraalJS allows use of JavaScript bindings
for Java Wasm interactions

The Future of Write Once, Run Anywhere

Copyright © 2025, Oracle and/or its affiliates20

javac demo and code on GitHub: • GraalVM can generate WasmGC now!

• Wasm modules built with JDK 25 EA

• Wasm backend provides Java
JavaScript interoperability

• GraalWasm makes it easy to extend Java
applications with WebAssembly

• GraalJS allows use of JavaScript bindings
for Java Wasm interactions

The Future of Write Once, Run Anywhere

Copyright © 2025, Oracle and/or its affiliates21

	Slide 1: The Future of Write Once, Run Anywhere
	Slide 2: The Future of Write Once, Run Anywhere
	Slide 3: The Future of Write Once, Run Anywhere
	Slide 4: javac to WebAssembly with
	Slide 5: AOT Compilation
	Slide 6: AOT Compilation to WebAssembly
	Slide 7: The New WebAssembly Backend for GraalVM
	Slide 8: How to Try It Out Today
	Slide 9: Type Hierarchy
	Slide 10: Type Hierarchy
	Slide 11: Type Hierarchy
	Slide 12: How Type Checks Work
	Slide 13: From Java CLI to Client-Side Web Application
	Slide 14: The Future of Write Once, Run Anywhere
	Slide 15: The Future of Write Once, Run Anywhere
	Slide 16: What’s New in GraalWasm
	Slide 17: Debugging with
	Slide 18: Debugging Rust compiled to Wasm embedded in Spring Boot
	Slide 19: The Future of Write Once, Run Anywhere
	Slide 20: The Future of Write Once, Run Anywhere
	Slide 21: The Future of Write Once, Run Anywhere

