
 MoonBit & WebAssembly

Hongbo Zhang
Char Scientist@MoonBit

WASMIO 2025

1

Today's Topic

1. What is MoonBit and Why

2. MoonBit + Wasm for the Browser

3. MoonBit + Wasm for the Server using Component Model

4. MoonBit beyond Wasm

2

About Me

Creator of ReScript, contributor to OCaml, Flow

Unique experience: implemented most parts of the whole toolchain for ReScript in the

first version

Paranoid about compilation performance!

3

What is WebAssembly?

A binary instruction format for a stack-based virtual machine

Introduced by major browser vendors since 2017

Key features:

Near-native performance

Portable across platforms (Write once, run everywhere)

Compact encoding (Small size)

Sandboxed execution

Huge potential but hasn't fully taken off yet

4

The Problem with Existing Languages

Almost all major programming languages support wasm but ,

even "Hello World" could generate big wasm output

5

The Language Struggle is Real

Language Problem Feels Like...

Go 1.8MB "Hello World" Bringing a tank to a bicycle race

Rust Learning curve Climbing Everest in flip-flops

JavaScript Slow performance Racing a snail... and losing

6

Introducing MoonBit!

A programming language that designed for
WebAssembly

Tiny binary size

Blazing runtime speed

Lightning compilation

Focused on dev experience

7

Key Features of MoonBit

Wasm optimization: small and fast
Size in bytes, not megabytes

Inspired by Rust

Generics, type inference, traits

More expressive pattern matching

Rust + GC - complexity for 10-100x faster compilation

8

Powerful MoonBit Pattern match beyond ADT

match data {
 [{ "age": Number(age), "name": String(name), .. }, ..]
 => "Hello \{name}. You are \{age}"
 _ => "not match"
 }

Support pattern match over json, map, resizable array with exhuastive checking

Custom pattern support coming soon

9

Developer Experience matters

IDE co-designed with the language on day 1

Parallel and fault-tolerant type checking

Out of box debugging

Real-time responsiveness

Cloud IDE: Zero-install, browser-based with full code intelligence

Native AI completion support

10

Demo

11

MoonBit + Wasm for Browser

Performance bottlenecks in JavaScript-heavy apps

Great story in FFI with JavaScript

WasmGC tight integration

Take advantage of JS builtin string proposal

12

Example: print_and_concat

pub fn print_and_concat(a : String, b : String) -> String {
 let c = a + b
 println(c)
 c
}

182 bytes

MoonBit string is JS String for Wasm, zero copy

Reuse the browser's garbage collector, easy to debug with Chrome devtools

13

DOM Manipulation: The Easy Way

extern type DOM // mapped to externref in Wasm

fn set_css(self : DOM, key : String, value : String) -> Unit = "dom" "set_css"

pub fn change_color(dom : DOM) -> Unit {
 dom.set_css("color", "red") // oo style
}

14

JS glue code

const { instance } = await WebAssembly.instantiateStreaming(
 fetch(
 new URL("./.../dom.wasm", import.meta.url)
),
 {
 dom: {
 set_css: (dom, key, value) => {
 dom.style[key] = value;
 },
 },
 ...
 }
);

No bind gen, MoonBit+WasmGC Repo

15

https://github.com/moonbit-community/demo-js-builtin-string/

Palindrome example: both performance and elegant

16

Unicode safe Palindrome

// generated by ChatGPT
function isPalindrome(normalizedStr) {
 if (!normalizedStr) return true; // Empty strings are palindromes
 let left = 0;
 let right = normalizedStr.length - 1;
 while (left < right) {
 const leftCP = normalizedStr.codePointAt(left);
 const rightCP = normalizedStr.codePointAt(right);
 if (leftCP !== rightCP) {
 return false;
 }
 left += leftCP > 0xFFFF ? 2 : 1;
 right -= rightCP > 0xFFFF ? 2 : 1;
 }
 return true;
}

17

MoonBit panlindrome: Efficient and elegant

pub fn palindrome(p : String) -> Bool {
 loop p.view() {
 [head, .. middle, tail] =>
 if head == tail {
 continue middle
 } else {
 return false
 }
 [_] | [] => true
 }
}

O(n) complexity, stack alloacted and unicode safe

18

Real-world example

19

MoonBit + Wasm for Server

Frequently Asked Questions

Wasm does not support IO,
How to read files in MoonBit?

How to write servers in MoonBit?

...

20

Component Model to the Rescue!

Define standardized FFI (CLI, HTTP, Crypto,

etc.) using WIT

Enables language-agnostic/platform-

agnostic composition

Better modularity for cloud & edge
computing

MoonBit supports both Wasm linear and
WasmGC

21

MoonBit vs. Other Languages

A simple HTTP server returning "Hello World"

Language Binary Size (KB)

MoonBit 27

Rust 100

Python 17408

Way smaller than containers!

22

Real-world Example: MoonBit Powered Microservices

Code review agent for MoonBit using MoonBit + Component Model

23

MoonBit Supports Component Model

Arbitrary Interface

1. Define interface with WIT

2. Generate bindings using wit-bindgen

3. Develop your application logic

4. Componentize using wasm-tools component
embed --encoding utf16 : Embed WIT file and meta information

new : Transform to component

5. Run with wasmtime or jco

24

MoonBit + Component Model for More Possibilities

Reuse existing libraries

25

MoonBit + Component Model for More

Define interface

package peter-jerry-ye:tree-sitter@0.1.0;
// C exports, MoonBit imports
interface language {
 use types.{language};
 get-language: func() -> language;
}
interface types {
 resource language { }
 resource parser {
 constructor();
 set-language: func(language: borrow<language>);
 }
}

26

MoonBit + Component Model for More

Provide binding in C and build with wasi-sdk

exports_own_language_t
exports_get_language(void) {
 exports_language_t *language =
 malloc(sizeof(exports_language_t));
 language->language = tree_sitter_json();
 // transform to resource
 return exports_language_new(language);
}
// ...

27

MoonBit + Component Model for More

Use generated library in MoonBit

pub fn run() -> Result[Unit, Unit] {
 let language = @language.get_language()
 let parser = @types.parser()
 parser.set_language(language)
 let tree = parser.parse_string(...)
}

And compose with wac plug moonbit.wasm --plug c.wasm -o exe.wasm
https://github.com/bytecodealliance/wac

28

https://github.com/bytecodealliance/wac

MoonBit + Component Model in the Future

Come to learn more about MoonBit and component in our workshop tomorrow

Integrate code generation and wasm-tools directly in the toolchain

Distribute Phase 5 proposals as ready-to-use libraries

Implement WASIp3 (futures and streams) support

Expand ecosystem with more Component Model-based libraries

29

Beyond Wasm

MoonBit supports multiple backends

WebAssembly (both linear and GC)

Native
Compile to C for MCU, tiny binaries

Compile to LLVM bitcode

Self hosting in the long run

JavaScript

The elm architecture in MoonBit

beta.mooncakes.io made in MoonBit

30

MoonBit Community

MoonBit beta comes out this year

Moonbit lang on X: @moonbitlang

Discord Community: https://discord.gg/5d46MfXkfZ

Package manager: mooncakes.io

31

https://discord.gg/5d46MfXkfZ

