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Today's Topic 

1.  What is MoonBit and Why

2.  MoonBit + Wasm for the Browser

3.  MoonBit + Wasm for the Server using Component Model

4.  MoonBit beyond Wasm
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About Me

Creator of ReScript, contributor to OCaml, Flow

Unique experience: implemented most parts of the whole toolchain for ReScript in the

first version

Paranoid about compilation performance!
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What is WebAssembly? 

A binary instruction format for a stack-based virtual machine

Introduced by major browser vendors since 2017

Key features:

Near-native performance 

Portable across platforms (Write once, run everywhere)

Compact encoding (Small size )

Sandboxed execution 

Huge potential but hasn't fully taken off yet
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The Problem with Existing Languages 

Almost all major programming languages support wasm but ,

even "Hello World" could generate big wasm output
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The Language Struggle is Real

Language Problem Feels Like...

Go 1.8MB "Hello World" Bringing a tank to a bicycle race

Rust Learning curve Climbing Everest in flip-flops

JavaScript Slow performance Racing a snail... and losing
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Introducing MoonBit! 

A programming language that designed for
WebAssembly

Tiny binary size 

Blazing runtime speed 

Lightning compilation 

Focused on dev experience

7



Key Features of MoonBit 

Wasm optimization: small and fast
Size in bytes, not megabytes

Inspired by Rust

Generics, type inference, traits

More expressive pattern matching

Rust + GC - complexity for 10-100x faster compilation
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Powerful MoonBit Pattern match beyond ADT

match data {
    [{ "age": Number(age), "name": String(name), ..  }, ..] 
      => "Hello \{name}. You are \{age}"
    _ => "not match"
  }

Support pattern match over json, map, resizable array with exhuastive checking

Custom pattern support coming soon
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Developer Experience matters 

IDE co-designed with the language on day 1

Parallel and fault-tolerant type checking

Out of box debugging

Real-time responsiveness

Cloud IDE: Zero-install, browser-based with full code intelligence

Native AI completion support
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Demo
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MoonBit + Wasm for Browser

Performance bottlenecks in JavaScript-heavy apps

Great story in FFI with JavaScript

WasmGC tight integration

Take advantage of JS builtin string proposal
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Example: print_and_concat

pub fn print_and_concat(a : String, b : String) -> String {
  let c = a + b
  println(c)
  c
}

182 bytes 

MoonBit string is JS String for Wasm, zero copy

Reuse the browser's garbage collector, easy to debug with Chrome devtools
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DOM Manipulation: The Easy Way

extern type DOM // mapped to externref in Wasm

fn set_css(self : DOM, key : String, value : String) -> Unit = "dom" "set_css"

pub fn change_color(dom : DOM) -> Unit {
  dom.set_css("color", "red") // oo style
}
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JS glue code

const { instance } = await WebAssembly.instantiateStreaming(
  fetch(
    new URL("./.../dom.wasm", import.meta.url)
  ),
  {
    dom: {
      set_css: (dom, key, value) => {
        dom.style[key] = value;
      },
    },
  ...
  }
);

No bind gen, MoonBit+WasmGC Repo
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Palindrome example: both performance and elegant
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Unicode safe Palindrome

// generated by ChatGPT
function isPalindrome(normalizedStr) {
  if (!normalizedStr) return true; // Empty strings are palindromes    
  let left = 0;
  let right = normalizedStr.length - 1;  
  while (left < right) {    
    const leftCP = normalizedStr.codePointAt(left);
    const rightCP = normalizedStr.codePointAt(right);        
    if (leftCP !== rightCP) {
      return false;
    }    
    left += leftCP > 0xFFFF ? 2 : 1;
    right -= rightCP > 0xFFFF ? 2 : 1;
  }  
  return true;
}
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MoonBit panlindrome: Efficient and elegant

pub fn palindrome(p : String) -> Bool {
  loop p.view() {
    [head,  .. middle,  tail] =>
      if head == tail {
        continue middle
      } else {
        return false
      }
    [_] | [] => true
  }
}

O(n) complexity, stack alloacted and unicode safe
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Real-world example
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MoonBit + Wasm for Server

Frequently Asked Questions

Wasm does not support IO,
How to read files in MoonBit?

How to write servers in MoonBit?

...
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Component Model to the Rescue!

Define standardized FFI (CLI, HTTP, Crypto,

etc.) using WIT

Enables language-agnostic/platform-

agnostic composition

Better modularity for cloud & edge
computing

MoonBit supports both Wasm linear and
WasmGC
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MoonBit vs. Other Languages

A simple HTTP server returning "Hello World"

Language Binary Size (KB)

MoonBit 27

Rust 100

Python 17408

Way smaller than containers!
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Real-world Example: MoonBit Powered Microservices

Code review agent for MoonBit using MoonBit + Component Model
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MoonBit Supports Component Model

Arbitrary Interface

1. Define interface with WIT

2. Generate bindings using wit-bindgen

3. Develop your application logic

4. Componentize using wasm-tools component
embed --encoding utf16 : Embed WIT file and meta information

new : Transform to component

5. Run with wasmtime  or jco
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MoonBit + Component Model for More Possibilities

Reuse existing libraries
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MoonBit + Component Model for More

Define interface

package peter-jerry-ye:tree-sitter@0.1.0;
// C exports, MoonBit imports
interface language {
    use types.{language};
    get-language: func() -> language;
}
interface types {
    resource language { }
    resource parser {
        constructor();
        set-language: func(language: borrow<language>);
    }
}
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MoonBit + Component Model for More

Provide binding in C and build with wasi-sdk

exports_own_language_t
exports_get_language(void) {
    exports_language_t *language =
        malloc(sizeof(exports_language_t));
    language->language = tree_sitter_json();
    // transform to resource
    return exports_language_new(language);
}
// ...
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MoonBit + Component Model for More

Use generated library in MoonBit

pub fn run() -> Result[Unit, Unit] {
    let language = @language.get_language()
    let parser = @types.parser()
    parser.set_language(language)
    let tree = parser.parse_string(...)
}

And compose with wac plug moonbit.wasm --plug c.wasm -o exe.wasm
https://github.com/bytecodealliance/wac
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MoonBit + Component Model in the Future

Come to learn more about MoonBit and component in our workshop tomorrow

Integrate code generation and wasm-tools  directly in the toolchain

Distribute Phase 5 proposals as ready-to-use libraries

Implement WASIp3 (futures and streams) support

Expand ecosystem with more Component Model-based libraries
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Beyond Wasm

MoonBit supports multiple backends

WebAssembly (both linear and GC)

Native
Compile to C for MCU, tiny binaries

Compile to LLVM bitcode

Self hosting in the long run

JavaScript

The elm architecture in MoonBit

beta.mooncakes.io made in MoonBit
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MoonBit Community

MoonBit beta comes out this year

Moonbit lang on X: @moonbitlang

Discord Community: https://discord.gg/5d46MfXkfZ

Package manager: mooncakes.io
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