MoonBit & WebAssembly %

Hongbo Zhang
Char Scientist@MoonBit
WASMIO 2025

Today's Topic ¥+

1. & What is MoonBit and Why
2. @ MoonBit + Wasm for the Browser

3. MoonBit + Wasm for the Server using Component Model

4. — MoonBit beyond Wasm

About Me

e Creator of ReScript, contributor to OCaml, Flow

e Unique experience: implemented most parts of the whole toolchain for ReScript in the
first version

e Paranoid about compilation performance!

What does rescript compiler give up by compiling so fast?

Zeroexcuses

The rescript compiler appears to compile faster than anything with similar type complexity, i.e. Rust,
Jsoo, Scala, Haskell. (esbuild feels faster, but esbuild mostly just strips away TS type signatures).

What is the rescript compiler giving up by compiling so fast? What is being sacrificed ?

What is WebAssembly?

e A binary instruction format for a stack-based virtual machine
o Introduced by major browser vendors since 2017

o Key features:
o Near-native performance «

o Portable across platforms (Write once, run everywhere)
o Compact encoding (Small size)
o Sandboxed execution

e Huge potential but hasn't fully taken off yet

The Problem with Existing Languages &

Almost all major programming languages support wasm but,
even "Hello World" could generate big wasm output

The Language Struggle is Real

Language Problem Feels Like...
Go 1.8MB "Hello World" Bringing a tank to a bicycle race
Rust Learning curve Climbing Everest in flip-flops

JavaScript Slow performance Racing a snail... and losing

Introducing MoonBit!

o A programming language that designed for
WebAssembly
o Tiny binary size
o Blazing runtime speed
o Lightning compilation

e Focused on dev experience

. 177.9 ms
Compute
X 160.8 ms
Time l
6,357.8 ms
Time to compute fib(46) 10000000 times
| 253 bytes
WASM
Sive | 498 bytes

1,447,712 bytes

Size of output Wasm file

Compilation
specd I et

2.56 s

. MoonBit . Rust Go

Time to compile 626 packages

Key Features of MoonBit

o Wasm optimization: small and fast
o Size in bytes, not megabytes

e Inspired by Rust
o Generics, type inference, traits

o More expressive pattern matching

e Rust + GC - complexity for 10-100x faster compilation

Powerful MoonBit Pattern match beyond ADT

match data {
[{ "age": Number(age), "name": String(name), .. }, ..]
=> "Hello \{name}. You are \{age}"
_ => "not match"

}

e Support pattern match over json, map, resizable array with exhuastive checking

e Custom pattern support coming soon

Developer Experience matters M

IDE co-designed with the language on day 1
o Parallel and fault-tolerant type checking
Out of box debugging
Real-time responsiveness
Cloud IDE: Zero-install, browser-based with full code intelligence

Native Al completion support

10

Demo

11

MoonBit + Wasm for Browser

e Performance bottlenecks in JavaScript-heavy apps
e Great story in FFI with JavaScript

o WasmGC tight integration

o Take advantage of JS builtin string proposal

12

Example: print_and concat

pub fn print_and_concat(a : String, b : String) —> String {
letc=a+b
println(c)
C

}

o 182 bytes
e MoonBit string is JS String for Wasm, zero copy

e Reuse the browser's garbage collector, easy to debug with Chrome devtools

13

DOM Manipulation: The Easy Way

extern type DOM // mapped to externref in Wasm
fn set_css(self : DOM, key : String, value : String) -> Unit = "dom" "set_css"

pub fn change_color(dom : DOM) —> Unit {
dom.set_css("color", "red") // oo style

}

JS glue code

const { instance } = await WebAssembly.instantiateStreaming(
fetch(
new URL("./.../dom.wasm", import.meta.url)

)

{
dom: {
set_css: (dom, key, value) => {
dom.stylel[key] = value;
I
F
¥

);

e No bind gen, MoonBit+WasmGC Repo

15

https://github.com/moonbit-community/demo-js-builtin-string/

Palindrome example: both performance and elegant

16

Unicode safe Palindrome

// generated by ChatGPT
function isPalindrome(normalizedStr) {
if (!'normalizedStr) return true; // Empty strings are palindromes
let left = 0;
let right = normalizedStr. length - 1;
while (left < right) {
const leftCP = normalizedStr.codePointAt(left);
const rightCP = normalizedStr.codePointAt(right);
if (leftCP !== rightCP) {
return false;
}

left += leftCP > OxFFFF ? 2 : 1;
right —= rightCP > OxFFFF ? 2 : 1;
I3

return true;

17

MoonBit panlindrome: Efficient and elegant

pub fn palindrome(p : String) —> Bool {
loop p.view() {
[head, .. middle, tail] =>
if head == tail {
continue middle
} else {
return false
¥
[_] | [l => true
}
¥

e O(n) complexity, stack alloacted and unicode safe

18

Real-world example

Consuming A High Performance
Wasm Library from JavaScript

In . we have already started exploring the use of
JavaScript strings directly within MoonBit's Wasm GC backend. As we have previously
seen, not only is it possible to write a JavaScript-compatible string-manipulating API in

MoonBit, but once compiled to Wasm, the resulting artifact is impressively tiny in size.

In the meantime, however, you might have wondered what it will look like in a more
realistic use case. That is why we are presenting today a more realistic setting of

rendering a Markdown document on a JavaScript-powered web application, with the

19

MoonBit + Wasm for Server

Frequently Asked Questions

e Wasm does not support IO,
o How to read files in MoonBit?

o How to write servers in MoonBit?

20

Component Model to the Rescue!
e Define standardized FFI (CLI, HTTP, Crypto,
etc.) using WIT

e Enables language-agnostic/platform-
agnostic composition

o Better modularity for cloud & edge
computing

e MoonBit supports both Wasm linear and
WasmGC

Component Component
Component
1O HTTF Clock
RUNTIME

21

MoonBit vs. Other Languages

pub fn handle(

A simple HTTP server returning "Hello World" _request : @types. IncomingRequest,
response_out - : -@types.ResponseOutparam
) - —>-Unit {
1 H try {
Language Blnary Slze (KB) let response =-@http.response! (200)
guard response.body() is Ok(outgoing_body)
MoonBit 27 response_out.set(Ok(response))

guard outgoing_body.write() is Ok(outgoing_stream)
@io.println_sync!("Hello World!", stream=outgoing_stream)

RUSt 1 OO outgoing_stream.drop()
guard outgoing_body.finish(None) is 0k(_)
Y catch { _=>() 1}

Python 17408 |

Way smaller than containers!

22

Real-world Example: MoonBit Powered Microservices
|

peter-jerry-ye-code-review commented now e

11 This code review is generated by a bot. Please verify the content before trusting it.

The pull request message indicates that this change is related to the migration of intrinsic attribute syntax in the MoonBit
language. The main change is replacing the old /// @intrinsic comment-based attribute with a new #intrinsic("...")
syntax.

After analyzing the code changes, | found no correctness, performance, or maintainability issues. The changes are purely
syntactic and consistent across all files. Here's my review summary:

» . [Syntactic Change for Intrinsic Attributes]
The changes are well-executed with:

1. Consistent formatting across all files
2. Proper preservation of intrinsic names

3. Correct migration path from comment-based to direct attribute syntax

No further changes are needed for this pull request.

Code review agent for MoonBit using MoonBit + Component Model

23

MoonBit Supports Component Model

Arbitrary Interface

1. Define interface with WIT
2. Generate bindings using wit-bindgen

3. Develop your application logic

4. Componentize using wasm-tools component
o embed —--encoding utf16 : Embed WIT file and meta information

o new : Transform to component

5.Run with wasmtime or jco

24

MoonBit + Component Model for More Possibilities

e Reuse existing libraries

(WIT Declaration j

[Tree Sitter] (c L""W“"S] [MoonBit Binding] [MoonBit CLI]

25

MoonBit + Component Model for More

e Define interface

package peter—-jerry-ye:tree-sitter@9.1.0;
// C exports, MoonBit imports
interface language {
use types.{language};
get-language: func() —> language;
¥
interface types {
resource language { }
resource parser {
constructor();
set-language: func(language: borrow<language>);

26

MoonBit + Component Model for More

e Provide binding in C and build with wasi-sdk

exports_own_language_t
exports_get_language(void) {
exports_language_t *xlanguage =
malloc(sizeof(exports_language_t));
language—>language = tree_sitter_json();
// transform to resource
return exports_language_new(language);

27

MoonBit + Component Model for More
o Use generated library in MoonBit

pub fn run() —> Result[Unit, Unit] {
let language = @language.get_language()
let parser = @types.parser()
parser.set_language(language)
let tree = parser.parse_string(...)

e And compose with wac plug moonbit.wasm ——plug c.wasm -0 exe.wasm
https://github.com/bytecodealliance/wac

28

https://github.com/bytecodealliance/wac

MoonBit + Component Model in the Future

e Come to learn more about MoonBit and component in our workshop tomorrow

Integrate code generation and wasm-tools directly in the toolchain

Distribute Phase 5 proposals as ready-to-use libraries

Implement WASIp3 (futures and streams) support

e Expand ecosystem with more Component Model-based libraries

29

Beyond Wasm

e MoonBit supports multiple backends
o WebAssembly (both linear and GC)

o Native
= Compile to C for MCU, tiny binaries

= Compile to LLVM bitcode
= Self hosting in the long run

o JavaScript
= [The elm architecture in MoonBit

= peta.mooncakes.io made in MoonBit

30

MoonBit Community

e MoonBit beta comes out this year
e Moonbit lang on X: @moonbitlang

e Discord Community: https://discord.gg/5d46MfXkfZ

o Package manager: mooncakes.io

31

https://discord.gg/5d46MfXkfZ

