

Fernando Félix Gutiérrez Blanco
Velneo Development Team Manager

fgutierrez@velneo.com
X/Twitter @fgutierrez_

https://velneo.com

Giving Low Code to the Web with WebAssembly:
Velneo's Success Story

1. Velneo PaaS

2. The Challenge

3. Why WebAssembly

4. Integrating WebAssembly with Qt

5. Technical Insights

6. Benefits

7. Challenges

8. Future

Agenda

Top 10 of the best companies to work in Spain

Best company in the ICT sector to work in Spain

Velneo’s customers are present in more than 30 countries

International presence

Create the application that your
company needs

- - - - - - - - - - - - - - - - - - -/ *

- - - - - - - - - - - - - - - - - - - * /

Build any business management application
with Low-Code, you have the power to build
your application alone or together with us, all
in one place.

Low-Code software category leaders. Gartner Report 2023↗

https://www.getapp.com/development-tools-software/low-code-development-platform/category-leaders/

● Enterprise Resource Planning (ERP)
● Customer Relationship Management (CRM)
● Inventory and Warehouse Management
● Manufacturing and Production Systems
● Accounting and Financial Management
● Human Resources (HR) and Payroll Solutions
● Project and Resource Management
● Supply Chain and Logistics Solutions

What is Velneo for?

PaaS
Low-Code solution

DEVELOPMENT DEPLOYMENT SOLUTION

SERVER ADMIN APPLICATION EDITOR

SERVER

DATABASE MANAGEMENT

API APPLICATION RUNNER

TCP 690 (IANA)

https://docs.google.com/file/d/1tQWem28xRoZfk2y5SWugvI5S4sbIP4iL/preview

MULTIPLATAFORM

Desktop
● Our platform is built on over 20 years of C++ development, which provided us with

performance and stability.
● Separate builds for each operating system

○ Windows, macOS, Linux, Android, iOS
● Time-consuming and resource-intensive due to maintaining multiple builds.

○ Qt framework helps to set them low coding once but…
● Inconsistencies in user experience across platforms.

Web
● Build once, deploy everywhere
● Bringing our desktop-centric platform to the web without losing performance and stability
● Ensuring seamless integration and user experience across devices

The Challenge

Previously
● NPAPI, Native Client, Pepper, PPAPI, etc. (Discontinued)
● Emscripten for JavaScript (Low performance)

Main features
● Unified Codebase: Compile once, run anywhere via the web, eliminating the need for separate builds.
● High Performance: Near-native execution speed, ensuring efficient performance across all devices.
● Broader Reach: Access applications on any device with a modern browser, enhancing accessibility.

Why WebAssembly

Key Steps in the Integration
● Emscripten Compilation from C++
● Qt framework for WebAssembly helps with pre-built binaries and binary compatibility.
● Compilation flags and Emscripten optimizations to strike a balance between download size and

runtime speed, and for better performance during execution.

Benefits
● Cross-System Compatibility

○ Velneo’s business logic can operate across different platforms including Web without changes in
the applications

○ Velneo web components can also interact like the desktop components

Integrating WebAssembly

https://docs.google.com/file/d/1fJazWaKj546B3v2nupPDbjjyp567VOKG/preview

https://docs.google.com/file/d/1-lV8zexbsIyQavciDB9Awk1oVegOPFJu/preview

https://docs.google.com/file/d/1L8WM1KGOKsEP4-dModQAtt6kSAQqT3PW/preview

WebAssembly & Qt Interplay
● C++ compiles via Emscripten into a .wasm module
● Qt framework helps and create html and js files to load the module

Browser Environment
● Loaded with javascript (qtloader.js), the .wasm module runs in the browser’s execution

environment.
● Qt framework handle UI rendering in the canvas, event management, user interaction, and

cross-platform APIs.
● Communication with the Velneo server uses TCP protocol 690 (IANA) under standard WebSockets

thanks to Emscripten.

 Technical Insights: Core Architecture Overview

AppRunner vs Cloudfront
● We used AppRunner to deploy thanks to the Apache Server.
● Lately, required headers can be used in Cloudfront using S3 in AWS, so we’re testing right now: deploy

is just drop the files in a bucket.

Multi-thread requires SharedArrayBuffers flag and execution in isolated environment
● Cross-Origin-Embedder-Policy: require-corp
● Cross-Origin-Opener-Policy: same-origin

Third party Social Login
● Google, Microsoft Entry, etc.

 Technical Insights: Deploy

Caching & Compression
● Leveraging browser caching
● Brotli compression

Threading & Concurrency
● SharedArrayBuffer flag required
● Predefined concurrency: Performance and memory balance

○ QT_WASM_PTHREAD_POOL_SIZE=9 // Qt sets 4 by default
○ >9 Hangs and other bad behaviour
○ To be retested after new Emscripten and browser versions

 Technical Insights: Optimizing Performance

WASM Memory Allocation 32 bits
● We tuned memory settings to balance performance and memory footprint.
● We started our product with 32 bits so far ago so we knew the limitations and were ready for this.
● Qt framework helped interoperability with 64 bits.

Dynamic memory allocation
● In JavaScript is expensive due to garbage collection, fixed allocation is generally recommended.
● Emscripten optimizations and careful memory management have minimized its impact in our case.

○ INITIAL_MEMORY=1522365440 // 1.4GB
○ ALLOW_MEMORY_GROWTH=true // Default by Qt)
○ MAXIMUM_MEMORY // 2GB by default

Resource Cleanup
● Proper cleanup of resources helps maintain consistent performance during prolonged sessions

(especially when dealing with large datasets and cache)

 Technical Insights: Memory Management Considerations

https://docs.google.com/file/d/1VGlbsBkwTewJjr0vYwtS4depxPU6AdrE/preview

Transitioning to Asynchrony: Reengineering Velneo's C++ Codebase
● Velneo Interface completely connected to database

Asyncify
● -sASYNCIFY -Os
● However, we eventually dropped that approach because it slowed down the performance and made

debugging significantly more challenging.

Rewrite nearly our entire codebase to operate asynchronously exploring event-driven alternatives
● -e.g. Avoid Qt exec calls in dialogs, avoid tcp synchronous communications
● 21.545.720 millions of code lines

 Technical Insights: Asynchrony

Disk Access in the Browser
● Instead of direct disk access, we use browser APIs within browser security limits

○ LocalStorage (10MB limit): Caché (compressed) & downloads & applications logic
○ File System Access API helped by Qt framework API: User downloads/uploads from desktop

PDF Generation for Printing:
● Since direct printing isn’t available in browsers, we switched to generating PDFs.

System Settings Access
● Browsers restrict direct access to system settings for security reasons.
● We adapted by creating a virtual settings interface helped by Qt framework, which simulates system

setting operations like in operating systems

 Technical Insights: Adaptations to the browser environment

● Lately Qt helps to test and debug (but we haven’t tested yet)
● Console
● DISABLE_EXCEPTION_CATCHING=0
● Selecting a browser: Chrome Tier 1, Firefox and Safari Tier 2.

 Technical Insights: Debugging

● Performance & Speed & Rich interface
● Simplified Development
● Simplified Deployment
● Webbrowser Security
● Enhanced User Experience
● Code in C++.

○ The Success of WASM: Code in your favorite language, the one you know best.

 Benefits

https://docs.google.com/file/d/1e9UcZzuO59LYK2As3WJTFstKmslooXic/preview

Browsers and operating systems
● Testing and debugging Complexity

Resource Management
● Threads and memory

Conversion to Asynchronous code
● Full covering (e.g. QML & QJSEngine scripts)

Challenges

https://docs.google.com/file/d/1Y3Q9Wkht4ljuZo1Uu2_zPyujeBEg1yHr/preview

● Mobile
● JSPI vs Asyncify vs Refactor code
● Direct Sockets API vs WebSockets
● 64 bits
● More help from Qt for WebAssembly
● Stand only apps with server inside

Future

Questions?

Fernando Félix Gutiérrez Blanco
Velneo Development Team Manager

fgutierrez@velneo.com
X/Twitter @fgutierrez_

https://velneo.com

