
From Cloud to Edge Computing
Unleashing the power of WebAssembly at the edge

Alex Casalboni

Developer Advocate, Edgee

edgee.cloud

Agenda for today

- What’s edge computing

- Cloud & edge evolution

- Wasm support @ CDNs

- Wasm @ Edge(e)

Background Web Developer & Software Engineering

Fun facts Startupper for 5+ years, visited 41 countries

Hobbies Reading, playing music, snowboarding

Proud of Father of one

So what is exactly
edge computing?

Cloud history

bcs.org/articles-opinion-and-research/history-of-the-cloud/

Cloud (recent) history

CDNs evolved too!

Amazon
CloudFront

2009 20111998 2008Founded

CDNs evolved too!

Amazon
CloudFront

2009 20111998 2008Founded

Edge compute
2017

CF Workers

2019

Compute@Edge

2019

EdgeWorkers

2016

Lambda@Edge &

CF Functions (2021)

CDNs evolved too!

Amazon
CloudFront

2009 20111998 2008Founded

Edge compute
2017

CF Workers

2019

Compute@Edge

2019

EdgeWorkers

2016

Lambda@Edge &

CF Functions (2021)

Data services EdgeKV, Cloudlets,

Image/Video Manager

KeyValueStore Workers KV,

Queues, D1, R2

KV/Secret/Config

store, Fanout

CDNs evolved too!

Amazon
CloudFront

2009 20111998 2008Founded

Edge compute
2017

CF Workers

2019

Compute@Edge

2019

EdgeWorkers

2016

Lambda@Edge &

CF Functions (2021)

Data services EdgeKV, Cloudlets,

Image/Video Manager

KeyValueStore Workers KV,

Queues, D1, R2

KV/Secret/Config

store, Fanout

Wasm support --no-expose-wasm Not officially… but

somebody succeeded!

2018 (Wasm)

2022 (Wasi)

Built-in since

launch

A closer look

Wasm @ Fastly Compute:

• Official SDKs for JS/TS, Rust, and Go

• Unofficial SDKs for Zig, Swift, Ruby,
and .NET

• Public .witx definitions to build your own

SDK and package Wasm binaries

• Only wasip1

Wasm @ Cloudflare Workers:

• Beta support for Python (via Pyodide)

• Optimized imports with linear
memory snapshots

• Bindings exposed via JsProxy

• Beta support for Rust (workers-rs crate)

• wasm32-unknown-unknown target

Globally distributed by default

Amazon
CloudFront

Resource and performance constraints

On Fastly Compute:

• Max CPU time: 50ms

• Max memory: 128MB

• Max # of lookups: 16

• Max # of backend reqs: 32

On Cloudflare Workers:

• Max CPU time: 10ms (free), 30s (paid)

• Max memory: 128MB

• Max # of lookups: 50 (free), 1000 (paid)

• Max # of sub-reqs: 50 (free), 1000 (paid)

(Well-known) Wasm benefits

• Cross-platform portability

• Near-native performance

• Lightweight & fast initialization

• Secure sandboxing

• Multi-language support & versatility

Wasm @ Edge(e)

Client device Cloud / website

Client-side SDKs:
• Slow down performance
• Increased security risk
• Privacy compliance issues
• Lead to inaccurate analytics

S3

Kinesis

Firehose

EventBridge

Client device Cloud / website

Edgee components:
• Unblockable
• Fast, secure, compliant
• Powered by Wasm

S3

Kinesis

Firehose

EventBridge

Mission: create an ecosystem of open source, interoperable

components that can run where they’re most effective.

Challenges:

• Run business logic efficiently after each HTTP request

• Support untrusted code (3rd-party components)

• Define domain-specific interfaces for many use cases

• Handle versioning of components and WIT interfaces

Vision: empower developers to build the next generation of

high-performance, sustainable applications.

Meet the
Edgee Component Registry

edgee.cloud/registry

Many more components and types coming soon
(CMP, A/B testing, security, AI inference, and more!)

roadmap.edgee.cloud/roadmap/data-collection-components

Technical overview

• Edge reverse proxy implemented in Rust

• Domain-specific layer on top of Wasmtime

• Shared codebase (proxy & CLI) /edgee-cloud/edgee

Technical overview

• Edge reverse proxy implemented in Rust

• Domain-specific layer on top of Wasmtime

• Shared codebase (proxy & CLI)

• Wasip2 & WIT

• package edgee:components

/edgee-cloud/edgee

/edgee-cloud/edgee-wit

Technical overview

• Edge reverse proxy implemented in Rust

• Domain-specific layer on top of Wasmtime

• Shared codebase (proxy & CLI)

• Wasip2 & WIT

• package edgee:components

• Supported languages

• Rust, Go, C, C#, Python, JavaScript, TypeScript

• Templates:

/edgee-cloud/edgee

/edgee-cloud/edgee-wit

/edgee-cloud/example-{LANG}-component

Technical overview

• Edge reverse proxy implemented in Rust

• Domain-specific layer on top of Wasmtime

• Shared codebase (proxy & CLI)

• Wasip2 & WIT

• package edgee:components

• Supported languages

• Rust, Go, C, C#, Python, JavaScript, TypeScript

• Templates:

• Fully integrated with the Edgee managed service

/edgee-cloud/edgee

/edgee-cloud/edgee-wit

/edgee-cloud/example-{LANG}-component

Meet the Edgee CLI

github.com/edgee-cloud/edgee

Client device Yourwebsite.com

Edgee proxy

Client device Yourwebsite.com

Edgee proxy

event.edgee.app

Client device Yourwebsite.com

Edgee proxy

eu-west-1

eu-west-2

event.edgee.app

us-east-1

…

Client device Yourwebsite.com

Edgee proxy

eu-west-1

eu-west-2

event.edgee.app

us-east-1

…

Edgee CLI

api.edgee.app

Other API consumers

edgee.cloud

Takeaways & next steps

• CDNs aren’t just for caching & DDoS protection anymore

• Edge computing is a new way of building new apps & features

• Wasm + wasip2 at the edge still limited, but promising

• We wish WIT had built-in versioning capabilities (host)

My call to actions for you:

• Join our open community

• Check out the Edgee Component Registry

Thank you!

Alex Casalboni

Developer Advocate, Edgee

linkedin.com/in/alexcasalboni

	Intro : 2 min
	Slide 1: From Cloud to Edge Computing Unleashing the power of WebAssembly at the edge
	Slide 2
	Slide 3

	edge + cloud history : 8 min
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

	Edgee : 10 min
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

	Outro + thanks : 2 min
	Slide 36
	Slide 37

